Showing posts with label network. Show all posts
Showing posts with label network. Show all posts

OSPF Basic

OSPF atau Open Shortest Path First adalah jenis link state routing protokol. OSPF bersifat open standar yang berarti router yang berbeda merk -tidak hanya router cisco- dapat menggunakan routing protokol ini. Link adalah interface dari router dan state adalah deskripsi dari interface dan bagaimana interface itu terkoneksi dengan router. Ospf menggunakan metrik cost sebagai dasar untuk menentukan path ke destination network.

Link state protokol akan mempunyai topologi yang lengkap tentang jaringan, tidak seperti distance vector (eigrp, rip) yang hanya mengetahui network dari neighbor-nya. 
Mungkin perumpamaan yang tepat adalah jika kita berkendara dan menentukan arah berdasarkan papan penunjuk jalan (yang berwarna hjiau, besar, biasanya terletak dipersimpangan jalan) seperi kita menggunakan routing protokol eigrp , sedangkan menggunakan routing protokol ospf seperti menggunakan sistem gps, yang mempunyai peta jalan yang lengkap.

Saat Ospf diaktifkan pada router cisco, ospf akan mengirimkan link-state advertisements (LSA) pada semua interface yang terlibat dan juga menerima LSA dari router tetangga. LSA dapat diibaratkan sebagai potongan - potongan kecil gambar puzzle. Gambar puzzle ini ini disebut Link-state Database (LSDB). LSDB ini disebut topologi, dan ini adalah peta jaringan.

Begitu semua router mempunyai topologi lengkap, ospf akan menghitung menggunakan algoritma Djikstra (sebuah metode untuk menghitung jarak terpendek, Shortest Path First) untuk berbagai network tujuan. OSPF Topologi

Ospf bekerja dalam konsep area, dan secara default setidaknya harus ada sebuah area. Area ini disebut area 0 atau area backbone

Pada gambar diatas terdapat area 1, area 2 dan area 3. Semua area ini harus terhubung dengan area backbone. Jika kita ingin pergi dari area 1 ke area 3 kita harus melewati area bacbone, begitu juga dari area 2 ke area 1 harus melewati area backbone ini.

Tipe - tipe area

Ada beberapa macam area yang dikenal oleh ospf,
  1. Standar area, ini adalah area default dari ospf, di dalam nya terdapat area backbone dan area lainnya. Router yang menghubungkan area yang berbeda disebut Area Border Router (ABR), dan router ospf yang terhubung dengan routing protokol lainnya (eigrp, rip, bgp) disebut Autonomous System Boreder Router (ASBR).
  2. Stub area
  3. Not-So-Stubby Area (NSSA),
  4. Totally Stub Area,

Tipe - tipe LSA

  • Router LSA
  • Network LSA  
  • Summary (ospf v2) / Inter-area prefix LSA (ospf v3)
  • ASBR summary (ospf v2) / Inter-area router (ospf v3)
  • External Link (ospf v2) / AS-External LSA (ospf v3)
  • Multicast ospf (tidak di support olsh IOS Cisco)
  • NSSA external link (ospf v2) / tipe 7 LSA (ospf v3)
  • Link LSA (ospf v3)
  • Intra-area prefix LSA (ospf v3)


Cara kerja OSPF

packet hello ospf
Ospf bekerja dengan cara berbeda dibandingkan dengan rip atau eigrp. Saat kita mengaktifkan ospf, router akan mulai mengirimkan paket hello pada tetangganya. Isi dari paket hello ini adalah, 
  1. Router ID, setiap router ospf harus mempunyai ID unik. ID ini dapat kita berikan dengan perintah router ID. Ospf secara otomatis akan memilih Router ID berdasarkan (a). IP Address tertinggi dari interface loopback, dan (b.) Ip Address tertinggi dari interface yang aktif.  
  2. Hello / Dead interval *, selang waktu ospf mengirimkan dan mendengarkan paket Hello. Jika ospf tidak mendengar paket hello dari neighbor-nya , ospf akan menganggap neighbornya "dead".
  3. Neighbors , router lain dimana ospf saling membentuk neighbor. 
  4. Area ID *, Ini area dimana ospf beroperasi
  5. Router Priority, nilai ini digunakan untuk pemilihan Designated Router / Backup Designated Router (DR/BDR) dalam network multiaccess seperti LAN, Fddi atau Token Ring.
  6. DR dan BDR IP Address, IP Address dar DR/BDR
  7. Authentication password *, password yang digunakan untuk otentikasi. OSpf mendukung 2 jenis otentikasi, clear text dan md5.
  8. Stub Area Flag *, on jika area didefinisikan sebagai area stub 
Ket: * = harus sama pada kedua router 

Multiple Autonomous System EIGRP


Setelah membaca artikel tentang penggabungan routing protokol dan melakukan praktek redistribusi routing protokol rip-eigrp, kita tahu bawah router cisco mempunyai kemampuan untuk menjalankan routing protokol yang berbeda dalam satu router. 
Bagaimana jika router cisco menjalankan 2 atau lebih routing protokol yang sama ?

Kita akan cari tahu jawabannya melalui lab berikut ini. Topologi yang akan kita gunakan seperti dibawah ini

topologi jaringan eigrp eigrp
Router R1 terhubung dengan network 10.10.10.0 /24 - 10.10.15.0/24. Router R3 terhubung dengan network 20.20.20.0 /24 - 20.20.25.0 /24. 

Kita konfigurasikan EIGRP 10 pada router R1 dan EIGRP 20 pada router R2. Cara konfigurasi EIGRP dapat dilihat disini, jangan lupa nonaktifkan fitur auto summary.


Sekarang kita konfigurasikan router R2

R2# configure terminal
R2(config)# router eigrp 10
R2(config-router)# no auto-summary
R2(config-router)# network 12.12.12.0 255.255.255.252
R2(config-router)# redistribute eigrp 20 metric 100000 100 255 255 1500
R2(config-router)#
R2(config-router)# router eigrp 20
R2(config-router)# network 23.23.23.0 0.0.0.3
R2(config-router)# no auto-summary
R2(config-router)# redistribute eigrp 10 metric 100000 100 255 255 1500
R2(config-router)#end

Perhatikan perintah "network 12.12.12.0 255.255.255.252" dan "network 23.23.23.0 0.0.0.3". Eigrp dapat menggunakan netmask biasa dan wildcard masking. Netmask ini secara otomatis akan diubah menjadi bentuk wildcard masking pada file konfigurasi (running-config).
 show running config
Untuk nilai metrik , kita mengambil datanya dari interface yang digunakan.
show interface fa1/0

Ok, sekarang semua telah dikonfigurasikan sesuai topologi diatas, kita lihat routing protokol pada router R2
show ip protocols

Walaupun router cisco dapat digunakan untuk menjalankan routing protokol EIGRP dengan  AS yang berbeda, tetapi cisco tidak menyarankan hal demikian karena dapat mengakibatkan kekacauan dalam tabel routing. Untuk lebih jelas dapat dibaca disini.
File konfigurasi dapat di download disini.
catatan:
Nilai MTU dapat dilihat disini

Redistribute Rip Eigrp

Pada artikel lalu, kita telah mempelajari cara menggabungkan rute statis dan eigrp dalam satu network. Yang menarik adalah, rute statis tidak menggunakan metrik sedangkan routing dinamis (eigrp) menggunakan metrik untuk menentukan jalur terbaik menuju destination network. Sehingga dalam redistribusi rute statis ke eigrp kita tidak perlu memberikan nilai metrik untuk rute statis. Tapi dalam dunia nyata, sebaiknya kita memberikan nilai metrik pada rute statis yang diinjeksikan pada eigrp.

Bagaimana dengan menggabungkan roting protokol RIP ke routing protokol EIGRP atau sebaliknya?
RIP mengunakan hop-count sebagai metriknya, sedangkan eigrp menggunakan bandwidth, delay, load dan reliability sebagi parameter untuk menghitung metriknya 

OK, kita akan belajar cara menggabungkan EIGRP dan RIP, dengan studi kasus seperti dibawah ini.

Skenario
Kalian adalah network administrator perusahaan PT. ABC. Perusahaan ini baru saja membeli perusahaan XYZ. Sebagai network engineer, kalian di kontrak untuk menyatukan network pada dua perusahaan yang baru bergabung tersebut. Perusahaan XYZ menggunakan routing protokol RIP pada network-nya, dan perusahaan PT.ABC menggunakan routing protokol EIGRP dengan topologi sebagai berikut,
topologi jaringan rip-eigrp

Ok, mari kita mulai. 
Pertama kita konfigurasikan router R1, router R2 dan router R3 menggunakan RIP versi 2. Khusus router R3 hanya network 13.13.13.0/30 yang di advertise. Lakukan ping untukl mencapai full connectivity. Cara konfigurasi dapat diihat disini. Kemudian konfigurasikan router R3, router R4 dan router R5 menggunakan routing protokol EIGRP AS 10. Cara konfigurasi dapat dilihat disini.

Ok sekarang mari kita lihat routing protokol apa saja yang berjalan di router R3, menggunakan perintah "show ip protocols"
show ip protocols rip eigrp

Dapat kita lihat, router R3 menjalankan routing protokol eigrp dan rip dan network mana saja yang ikut berpartisipasi.

Redistribute RIP EIGRP 

Ok sekarang kita injeksikan routing protokol rip pada eigrp dan sebaliknya,  sehingga semua network dapat saling berkomunikasi. 

R3#
R3# configure terminal 
R3(config)# router rip
R3(config-router)# redistribute eigrp 10 metric 3
R3(config-router)# router eigrp 10
R3(config-router)# redistribute rip 100000 100 128 128 1500 
R3(config-router)# end
R3#

Perhatikan perintah "R3(config-router)# redistribute eigrp 10 metric 3", karena RIP menggunakan hop-count sebagai metrik-nya disini kita masukkan 3 sebagai nilai metrik untuk eigrp (yang di injeksikan pada rip). 

Sedangkan perintah "R3(config-router)# redistribute rip 100000 100 128 128 1500" adalah nilai metrik untuk router rip (yang diinjeksikan pada eigrp). 

Kita lihat lagi bagaimana status routing pada router R3
show ip protocol R3

Dari gambar diatas, terlihat routing protokol eigrp telah diinjeksikan pada  RIP dan begitu juga sebaliknya. Untuk memperjelas hal ini kita lihat tabel routing pada router R1 dan R4

tabel routing R1
show ip route router cisco R1

tabel routing R4
show ip route router cisco R4


Dari gambar tabel routing diatas, terlihat network 4.4.4.0 dan 5.5.5.0 muncul pada router R1 dengan Administrative distance 120 dan metrik 3, network 1.1.1.0 dan 2.2.2.0 muncul pada tabel routing router R4. 

OK sekarang kita lakukan tes ping dari router R1 dan router R4
hasil ping Router R1
hasil ping Router R4

File konfigurasi gns3 dapat didownload disini.

Menggabungkan Routing Protokol yang Berbeda

Telah kita ketahui bahwa fungsi router adalah meneruskan paket data dalam jaringan komputer (network), dengan ip address yang berbeda. Untuk tujuan tersebut kita dapat menggunakan routing statis ataupun routing dinamis, tergantung situasi kondisi.

Bagaimana jika berhadapan dengan situasi dimana kita harus menggabungkan 2 atau lebih, routing protokol yang berbeda? 

Redistribusi adalah jawabannya. Dengan teknik ini, memungkinkan kita untuk menggabungkan satu routing protokol ke routing protokol lainnya. 

Pada cisco router, kita menggunakan perintah redistribute untuk menggabungkan routing protokol yang berbeda.

Ok langsung saja, kita praktekkan menggunakan gns3, dengan topologi seperti dibawah ini.
EIGRP Redistribute Static

Pada topologi diatas Divisi Sales menggunakan routing statis untuk jaringan komputernya. Router R1 terhubung pada network 1.1.1.1 /32 dan network 100.100.100.1/32. (di wakilkan dengan interface loopback pada gns3). Sedangkan network pada Divisi Iklan menggunakan routing protokol EIGRP. Router R3 mempunyai rute statis menuju network 1.1.1.1 /32 dan network 100.100.100.1 /32.

EIGRP Redistribute Static

Kita konfigurasikan Divisi Sales menggunakan statis routing, caranya dapat dibaca disini. Untuk Divisi Iklan kita konfigurasikan menggunakan EIGRP AS 10, dan non aktifkan auto-summary. Cara konfigurasi EIGRP dapat dibaca disini

Kita lihat tabel routing router R1

show ip route Router cisco R1

Pada tabel routing R1 muncul "Gateway of last resort is 12.12.12.2 to network 0.0.0.0". Ini adalah hasil perintah : 

R1(config)# ip route 0.0.0.0 0.0.0.0 12.12.12.2

yang berarti semua routing menuju kemana saja (selain yang directly connected) akan dialihkan ke next hop 12.12.12.2.

Sekarang kita lihat tabel routing R3
 show ip route Router cisco R3
Tabel routing R3 belum mempunyai rute menuju ke network 1.1.1.1/32 dan network 100.100.100.1/32 yang terletak dibelakang router R1.

Sekarang kita konfigurasikan router R2 Divisi Iklan dan Divisi Sales menggunakan redistribute (pastikan EIGRP telah dijalankan di R2, dan network . Sintaksnya adalah :

redistribute  [tipe] [metrik] (optional)

redistribute : menginstruksikan pada EIGRP, kita akan menginjeksikan network luar
tipe : tipe routing protokol yang akan kita injeksikan pada EIGRP.
metrik : metrik EIGRP. Sebenarnya tanpa nilai metrik, EIGRP secara otomatis akan memberikan nilai metrik, untuk routing dinamis kita harus memberikan nilai metriknya.

berikut potongan "running-config" dari router R2
!
 router eigrp 10
 redistribute static
 network 2.2.2.2 0.0.0.0
 network 12.12.12.2 0.0.0.0
 network 23.23.23.1 0.0.0.0
 no auto-summary
!

Setelah perintah redistribute diberikan pada EIGRP, kita lihat apa yang terjadi pada router R3
show ip route redistribute R3

Pada tabel routing router R3 muncul rute menuju network 1.1.1.1 dan network 100.100.100.1. Perhatikan code-nya D EX yang berarti EIGRP eksternal dengan nilai AD 170.

Kita tes ping network 1.1.1.1/32  dan network 100.100.100.1 dari R3,
Hasil tes ping Router R3

Untuk memastikan, kita tes ping 3.3.3.3 dari router R1,

Hasil tes ping Router R1

File konfigurasi gns3 dapat di download disini.

Konfigurasi EIGRP Stub Network

Pada umumnya network stub dikonfigurasikan pada topologi star atau "hub and spoke". Tipe konfigurasi ini pada umumnya ditemui pada jaringan WAN, dimana router distribusi (hub) terkoneksi secara langsung pada WAN, atau seringkali terkoneksi pada router lainnya.
topologi hub and spoke

Pada tipe jaringan "hub and spoke", router akses (spoke) harus meneruskan semua traffic non-lokal pada router hub, sehingga router spoke ini tidak perlu mempunyai tabel routing seluruh jaringan.

EIGRP Network Stub 

Ketika menggunakan routing protokol EIGRP, kita harus mengkonfigurasi router hub dan router spoke menggunakan routing protokol EIGRP, dan hanya routing spoke saja yang dikonfigurasi sebagai stub.  
Cisco router dengan versi IOS 12.4 ke atas mendukung EIGRP stub dengan tipe 
  • connected
  • leak-map
  • receive-only
  • redistribute
  • static
  • summary
Dari nama - nama tipe diatas, kita sudah dapat menduga jenis network yang di-advertise oleh EIGRP. Secara default, EIGRP stub hanya mengumumkan (advertised) network yang "directly connected" dan summary.

Konfigurasi EIGRP stub


topologi eigrp stub

Pada topologi diatas, cisco router Cabang-A dapat mengakses corporate network dan Internet hanya melalui router hub (router Core_1). Percuma saja jika router Cabang-A mempunyai tabel routing lengkap karena akses ke corporate network dan internet akan selalu melalui router Core_1. Dengan meng-konfigurasi router Cabang-A sebagai stub, akan menghemat bandwith dan memori.

Ok mari kita konfigurasi EIGRP agar semua network dapat terkoneksi (full connectivity) dan kita lakukan summary secara manual pada ip address 172.16.10.0 /24 - 172.16.15.0 /24. 
Kita lihat tabel routing router Core_1,

show ip route cisco router

Dari gambar diatas, network 172.16.10.0 /24 - 172.16.15.0 /24 tidak muncul dalam tabel routing Core_1, network diringkas menjadi 172.16.8.0 /21. Caranya dapat dibaca disini

Untuk simulasi perubahan network, kita matikan interface loopback 0 pada router Backup_1 dengan memberikan perintah "shutdown".  Mari kita lihat lagi tabel routing Core_1.
topologi change
Setelah memberikan perintah "shutdown " pada router Backup_1, terjadi perubahan topologi. network 1.1.1.0/24 tidak muncul dalam tabel routing Core_1. Kita lihat apa yang terjadi pada router Cabang-A.
debug eigrp packet query cisco router
Terlihat bahwa router Core_1,  mengirim paket query kepada router Cabang-A. Inilah yang yang akan terjadi pada router Cabang-A. Router Core_1 (hub) akan terus mengirimkan paket query kepada router Cabang-A (spoke) jika terjadi perubahan topologi. Proses ini akan menggunakan memori dan resource pada kedua router. Bayangkan jika terjadi pada ratusan router, yang dapat mengakibatkan router dalam keadaan Stuck In Active (SIA).

Mari kita konfigurasikan router Cabang-A sebagai stub, dengan memberikan perintah "eigrp stub".

Cabang-A# configure terminal
Cabang-A(config)#  router eigrp 15
Cabang-A(config-router)# eigrp stub
Cabang-A(config-router)# ^Z

Setelah kita konfigurasi stub pada router Cabang-A, simulasikan lagi perubahan topologi seperti diatas, dan amati hasil perintah "debug eigrp query" pada router Cabang-A.
debug eigrp packet query cisco router stub

Router Cabang-A tidak lagi menerima query dari router Core_1. 
Secara umum dapat dikatakan bahwa mengkonfigurasikan router yang terletak di ujung jaringan (router spoke) sebagai stub dapat meningkatkan performa network, mengurangi resource router dan konfigurasi router yang lebih sederhana.

File konfigurasi gns3 dapat didownload disini atau disini

Summarization secara Manual

Route summary atau dikenal juga sebagai route aggregation atau supernet adalah metode yang dikembangkan untuk meminimalkan tabel routing. Manfaat lain dari metode ini adalah meminimalkan overhead router ketika memproses pencocokan rute dari paket - paket data. 
Supernetting memerlukan routing protokol yang mendukung CIDR. RIPV2, EIGRP, IS-IS, OSPF dan BGP adalah routing protokol yang mendukung route summarization.
route summary supernet route aggregation

Tergantung pada routing protokol yang didukung, Cisco IOS secara default akan melakukan summarization ip address pada class defaultnya.  Untuk ip address class A akan di summary pada default netmasknya 255.0.0.0 ( CIDR /8 ), ip address class B pada netmask 255.255.0.0 (/16) dan ip address class C pada mask 255.255.255.0  (/24).  Walaupun route aggregation ini berguna, tetapi bukan tanpa resiko, perhatikan topologi di bawah ini,
route summarization risk
Router R1, R2 dan R3 menjalankan routing protokol EIGRP. Secara default EIGRP akan melakukan summarization pada network yang di-advertise. Jika ada paket data yang menuju network 172.16.1.0, router R1 akan kebingungan untuk meneruskan paket tersebut apakah ke router R2 atau router R3. 


Manual Summarization


Untuk melakukan summary secara manual adalah dengan mengubah ip address  dalam bentuk binari, kemudian melakukan pengenalan pola pada order bit tertinggi. 
Misalkan sebuah router mempunyai network berikut dalam tabel routingnya,
172.16.83.0 /24
172.16.84.0 /25
172.16.85.0 /24
172.16.86.0 /25172.16.88.0 /25
172.16.89.0 /25
172.16.90.0 /24
172.16.91.0 /24

Ubah ip address dalam bentuk binari seperti dibawah ini,
Route summarization

Kemudian mencari dan menetapkan pola yang sama pada order bit tertinggi. Pada gambar diatas ditunjukkan dengan warna merah, bit sisanya di set ke nol (0). Netmask dihitung dari jumlah bit yang sama. Sehingga ip address summary-nya adalah 172.16.80.0 dan netmasknya adalah /20 (CIDR) atau 255.255.240.0

Ip address summary juga termasuk network 172.16.80.0, 172.16.81.0, 172.16.82.0, 172.16.87.0,  172.16.92.0, 172.16.93.0, 172.16.94.0 dan 172.16.95.0. Sehingga harus dipastikan network- network yang hilang ini tidak muncul dari luar router.

Berkenalan dengan Stub Network


Analogi yang tepat mengenai stub network adalah pulau yang hanya mempunyai satu jembatan yang menghubungkan pulau tersebut dengan daratan utama. Tidak ada transportasi laut ataupun udara. Orang - orang keluar masuk pulau hanya melalui jembatan tersebut.
Dengan analogi diatas, kita dapat mendeskripsikan stub network sebagai  network yang hanya mempunyai satu jalan keluar atau masuk. 
topologi network stub

Perhatikan Router R2 pada gambar diatas, router R2 mempunyai beberapa LAN yang terkoneksi langsung dan hanya mempunyai satu jalur keluar dan masuk melalui interface fast ethernet 0/0 menuju Router R1-HQ. Secara umum dapat dikatakan bahwa network pada router R2 dapat disebut sebagai stub network, karena network ini tidak menuju network lain. Router R2 adalah akhir dari jaringan.


Tabel routing router R2 dapat disederhanakan dengan menggunakan default route, dengan R1-HQ menjadi next hop, atau menggunakan exit interface fa0/0. 

Pada topologi diatas, router R1-HQ akan dikenal sebagai transit network dan router R1-HQ disebut sebagai transit router.

Tantangan : Ada berapa stub network pada topologi diatas ?

Konfigurasi EIGRP Menggunakan Otentikasi MD5 (md5 authentication)

EIGRP hanya mendukung otentikasi dengan MD5.

Konfigurasi otentikasi pada routing protocol EIGRP hanya dilakukan dalam dua langkah :
  1. Membuat key chain dan key
  2. Menerapkan key chain pada interface ynag menjalankan EIGRP.  
Ok kita akan mencoba konfigurasi EIGRP menggunakan otentikasi. Dua router cisco terkoneksi melalui interface serial 1/0. Pada router R1 terdapat 3 interface loopback yang mewakili LAN, begitu juga pada router R2, terdapat 3 interface loopback.
topologi network EIGRP auth
Seperti pada lab sebelumnya, kita konfigurasikan agar EIGRP berjalan dan kita akan melakukan tes koneksi .

berikut hasil ping, yang berarti EIGRP berjalan
hasil ping dari Router R1

Membuat key chain dan key

Langkah- langkah untuk membuat keychain adalah sebagai berikut,
  • Pada konfigurasi global, definisikan nama keychain. Nama keychain tidak harus sama pada kedua roueter.
  • Pada keychain, definisikan key id, yang merupakan identifikasi key. Kita dapat membuat lebih dari satu key-id, tetapi yang digunakan oleh router adalah yang mempunyai nomor id paling kecil. Key id ini harus sama pada kedua router.
  • Setelah key id selesai dikonfigurasi, kita buat password yang sebenarnya dengan menggunakan perintah "key-string password". Ini adalah password yang sebenarnya, yang akan saling dicocokkan oleh EIGRP

Router R1
R1# configure terminal 
R1(config)# key chain kunciku_router1
R1(config-keychain)# key 1
R1(config-keychain-key)# key-string 123456
R1(config-keychain-key)# end

Router R2 
R2# configure terminal 
R2(config)# key chain kunciku_router2
R2(config-keychain)# key 1
R2(config-keychain-key)# key-string 123456
R2(config-keychain-key)# end


Setelah selesai mengkonfigurasikan key chain, hanya ada 2 langkah terakhir untuk dilakukan pada setiap router, yaitu mengatakan pada router keychain mana yang akan kita gunakan untuk otentikasi dan mengaktifkan otentikasi pada EIGRP. Kedua langkah ini dilakukan pada mode konfigurasi interface.

Ok, kita akan mengkonfigurasikan otentikasi pada router R1, 

Router R1
R1# configure terminal  
R1(config)# interface serial 1/0
R1(config-int)# ip authentication mode eigrp 15 md5
R1(config-int)# ip authentication key-chain eigrp 15 kunciku_router1
R1(config-int)#end
topologi change EIGRP
Perhatikan bahwa Neigbor 192.168.0.2 down dan kemudian membentuk neigbor lagi. Ini karena router R1 sekarang telah menggunakan otentikasi md5. Kita lihat apa yang terjadi pada router R2, meggunakan perintah "debug eigrp packets".
topologi change EIGRP Router R2
Kita lihat log pada router R2, terdapat pesan "auth failure".  OK kita konfigurasikan otentikasi pada router R1 dan melihat apa yang terjadi para router R1

Router R2
R2# configure terminal  
R2(config)# interface serial 1/0
R2(config-int)# ip authentication mode eigrp 15 md5
R2(config-int)# ip authentication key-chain eigrp 15 kunciku_router2
R2(config-int)# end

Berikut screenshot pada router R1
EIGRP md5 authentication


Verifikasi otentikasi EIGRP

Untuk memverifikasi otentikasi eigrp, kita gunakan perintah "debug eigrp packets", seperti dibawah ini.
verify md5 eigrp
tes koneksi 
hasil ping dari Router R1
File konfigurasi gns3 dapat didownload disini dan disini.

Konfigurasi Dasar Routing Protocol EIGRP pada Router Cisco

Pada artikel bagian 1, bagian 2 dan bagian 3 kita telah berkenalan dengan EIGRP, mempelajari bagaimana EIGRP bekerja membentuk neighbor dengan tetangganya dan memilih rute terbaik menuju destination network.   
Sangat mudah untuk mengkonfigurasi EIGRP pada router cisco, yang perlu kita lakukan adalah mengaktifkan EIGRP pada router cisco dengan perintah "router eigrp" diikuti dengan nomor Autonomous System (AS), kemudian mengumumkan (advertise) network yang terkoneksi pada router.

Konfigurasi EIGRP pada Router Cisco


OK, kita akan menggunakan topologi dibawah ini untuk konfigurasi dasar EIGRP.
Tugasnya adalah menghubungkan ketiga router menggunakan EIGRP dengan nomor AS 100. Buat tiga loopback interface yang mewakili LAN dengan data sebagai berikut :
Router_1 : 192.168.1.0 / 24
Router_2 : 192.168.2.0 / 24
Router_3 : 192.168.3.0 / 24
topologi dasar EIGRP

Berikut konfigurasi  pada ketiga router,

Router_1
!
router eigrp 100
passive-interface Loopback1
network 172.16.12.0 0.0.0.3
network 172.16.13.0 0.0.0.3
network 192.168.1.0 
no auto-summary 
! 

Router_2
!
router eigrp 100
passive-interface FastEthernet2/0
passive-interface Loopback2
network 172.16.12.0 0.0.0.3 
network 172.16.23.0 0.0.0.3
network 192.168.2.0 
network 192.168.10.0
no auto-summary
!

Router_3
!
router eigrp 100
passive-interface Loopback3
network 172.16.13.0 0.0.0.3
network 172.16.22.0 0.0.0.3
network 192.168.1.0 
no auto-summary
!

Perintah "router eigrp [AS]" akan mengaktifkan routing protokol EIGRP pada router cisco. Nomor Autonomous System  ini harus sama, jika tidak EIGRP tidak akan pernah membentuk neighbor dengan tetangganya. 
Efek dari perintah "passive-interface" tergantung dari routing protokol yang diterapkan. Pada interface yang menjalankan routing protocol RIP, perintah "passive-interface' akan mencegah router mengirim paket update tetapi membolehkan untuk menerima paket update. Sedangkan pada EIGRP, perintah "passive-interface" ini akan mencegah interface untuk mengirim ataupun menerima paket update
Secara default, EIGRP akan melakukan summary pada ip address clasfull. Tujuannya memperkecil tabel routing, tapi pada beberapa kasus hal ini akan membuat router bingung, yang akan mengakibatkan paket loss dan routing yang tidak akurat. Untuk mencegah hal ini, gunakan perintah no auto-summary yang akan mencegah EIGRP untuk melakukan summary pada network.


Verifikasi konfigurasi EIGRP


Beberapa perintah yang berguna 
  • show ip protocols
  • show ip eigrp interfaces
  • show ip eigrp neighbors
  • show ip eigrp topology all-links

show ip protocol

Perintah ini akan menampilkan parameter dan status dari routing protocol yang sedang berjalan. Berikut screenshot dari Router_1.

hasil perintah show ip protocols

show ip eigrp interfaces

Perintah ini akan menampilkan interface mana yang aktif dalam proses EIGRP. Berikut screenshot dari Router_1.

hasil perintah show ip eigrp interfaces

show ip eigrp neigbors

Perintah ini akan menampilkan tabel neighbor yang dipelajari EIGRP dari tetangganya dan memastikan neighbor itu aktif atau tidak. Berikut screenshot dari Router_1.

hasil perintah show ip eigrp neighbors

show ip eigrp topology

Perintah ini menampilkan tabel topologi EIGRP, status aktif tidaknya proses routing, successor, dan feasible distance menuju destination network. Untuk informasi yang lebih lengkap gunakan "show ip eigrp topology all-links". Berikut screenshot dari Router_1.
hasil perintah show ip eigrp topologi


Setelah memastikan bahwa EIGRP telah berjalan dengan baik, kita akan melakukan tes koneksi dengan menggunakan ping.
hasil ping topologi EIGRP
File konfigurasi lab gns3 dapat di download disini dan disini

Bagaimana EIGRP bekerja? (part 3)

Pada bagian lalu, telah dibahas bagaimana EIGRP memilih rute terbaik menuju destination network. Salah satu keunggulan yang dilmiliki EIGRP dibandingkan dengan routing protokol lainnya adalah, EIGRP memiliki rute back-up. Rute back-up ini akan dipasang di tabel route jika rute utama mengalami kegagalan. 
Bagaimana cara EIGRP memilih rute back-up? 
Untuk menjadi rute back-up, formula yang harus dipenuhi adalah 
Nilai Advertised distance harus lebih kecil dari nilai feasible distance successor
Topologi EIGRP feasible successor
Router jakarta akan mengatakan kepada router Aceh advertised distance-nya 7, router Makassar akan mengatakan advertised distance-nya 2, dan router surabaya akan mengatakan advertise distance-nya 8 . Untuk lebih mudah kita buat dalam bentuk tabel, seperti dibawah ini.
tabel advertised distance eigrp

Karena router aceh tahu nilai metrik menuju router jakarta, makassar dan surabaya (directly connected), kita akan melengkapi tabel di atas dengan feasible distance. 
tabel feasible distance EIGRP
Rute dengan nilai feasible distance terkecil (router jakarta ) akan menjadi successor. Untuk melihat rute back-up nilai advertised distance harus lebih kecil dari nilai feasible distance, sehingga yang menjadi feasible successor adalah router surabaya.
tabel feasible successor EIGRP

Bagaimana EIGRP bekerja ? (part 2)


Dalam perhitungan metriknya, EIGRP menggunakan beberapa parameter yaitu bandwidth, delay, load dan reliability. Bandwidth dan delay adalah nilai yang statis. Link yang menggunakan Fast Ethernet mempunyai nilai 100 Mbit dan delay 100 usec (micro second). Ethernet mempunyai nilai 10Mbit dan delay 1000 usec. 
Nilai load dan reliability adalah dinamis, yang berarti dapat selalu berubah dari waktu ke waktu  tergantung kondisi. Load adalah seberapa sibuknya jalur tersebut, dan reliability adalah seberapa handal link tersebut dengan melihat dari error. Semakin rendah nilai metrik ini, semakin bagus.

Secara default, EIGRP hanya menggunakan nilai bandwidth dan delay. Kita tidak ingin EIGRP mengirimkan update setiap saat hanya karena sebuah link tiba - tiba menjadi sibuk. 

Bagaimana EIGRP memilih route terbaik ?
Telah kita ketahui bahwa EIGRP, menggunakan metrik untuk memilih route terbaik menuju destination network. Nilai yang terendah yang akan dipilih dan dipasang pada tabel routing. 
Kita mempunyai tiga router cisco yang kita namakan Aceh, Jakarta dan Jayapura. Ketiga router tersebut menjalankan routing protocol EIGRP untuk mendapatkan waktu convergence yang cepat. Kita akan menghitung rute terbaik menuju destination yang terletak dibelakang router Jayapura. 
topologi EIGRP
Pada gambar diatas, telah diberikan nilai metrik yang sederhana, jika kita lihat nilai metrik ini pada router cisco yang asli, nilainya akan sangat besar sekali.
topology EIGRP advertised distance

Router jayapura akan mengumumkan metriknya untuk mencapai destination network kepada router jakarta. Informasi metrik inilah yang disebut sebagai advertised distance.
Advertised distance (metrik) dari router jayapura ini akan di simpan pada tabel topologi router jakarta. Di dalam tabel topologi router jakarta juga tersimpan metrik untuk menuju router jayapura (directly connected). Sekarang router jakarta tahu metrik menuju destination network yang berada di balik router jayapura. Total metrik inilah yang disebut feasible distance, yang akan disimpan pada tabel routing router jakarta.
topology EIGRP advertised distance
Karena router aceh juga menjalankan EIGRP, router jakarta akan mengirim feasible distance ke router aceh, yang bernilai 7. Router aceh akan menyimpan inforrmasi ini sebagai advertise distance dalam tabel topologinya. Sekarang router aceh tahu berapa metrik untuk mencapai destination network (yaitu 14, yang berasal dari advertised distance dari router jakarta, dan nilai metrik -directly connected- ke router jakarta) dan menyimpan informasi ini dalam tabel routing. 

Bagaimana dengan back up route ?  

bersambung pada artikel berikutnya